Paper Reading AI Learner

Demanding and Designing Aligned Cognitive Architectures

2021-12-19 16:49:28
Koen Holtman

Abstract

With AI systems becoming more powerful and pervasive, there is increasing debate about keeping their actions aligned with the broader goals and needs of humanity. This multi-disciplinary and multi-stakeholder debate must resolve many issues, here we examine three of them. The first issue is to clarify what demands stakeholders might usefully make on the designers of AI systems, useful because the technology exists to implement them. We make this technical topic more accessible by using the framing of cognitive architectures. The second issue is to move beyond an analytical framing that treats useful intelligence as being reward maximization only. To support this move, we define several AI cognitive architectures that combine reward maximization with other technical elements designed to improve alignment. The third issue is how stakeholders should calibrate their interactions with modern machine learning researchers. We consider how current fashions in machine learning create a narrative pull that participants in technical and policy discussions should be aware of, so that they can compensate for it. We identify several technically tractable but currently unfashionable options for improving AI alignment.

Abstract (translated)

URL

https://arxiv.org/abs/2112.10190

PDF

https://arxiv.org/pdf/2112.10190.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot