Paper Reading AI Learner

Mixed Precision Low-bit Quantization of Neural Network Language Models for Speech Recognition

2021-11-29 12:24:02
Junhao Xu, Jianwei Yu, Shoukang Hu, Xunying Liu, Helen Meng

Abstract

State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications. Low-bit neural network quantization provides a powerful solution to dramatically reduce their model size. Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors. To this end, novel mixed precision neural network LM quantization methods are proposed in this paper. The optimal local precision choices for LSTM-RNN and Transformer based neural LMs are automatically learned using three techniques. The first two approaches are based on quantization sensitivity metrics in the form of either the KL-divergence measured between full precision and quantized LMs, or Hessian trace weighted quantization perturbation that can be approximated efficiently using matrix free techniques. The third approach is based on mixed precision neural architecture search. In order to overcome the difficulty in using gradient descent methods to directly estimate discrete quantized weights, alternating direction methods of multipliers (ADMM) are used to efficiently train quantized LMs. Experiments were conducted on state-of-the-art LF-MMI CNN-TDNN systems featuring speed perturbation, i-Vector and learning hidden unit contribution (LHUC) based speaker adaptation on two tasks: Switchboard telephone speech and AMI meeting transcription. The proposed mixed precision quantization techniques achieved "lossless" quantization on both tasks, by producing model size compression ratios of up to approximately 16 times over the full precision LSTM and Transformer baseline LMs, while incurring no statistically significant word error rate increase.

Abstract (translated)

URL

https://arxiv.org/abs/2112.11438

PDF

https://arxiv.org/pdf/2112.11438.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot