Paper Reading AI Learner

Translating Human Mobility Forecasting through Natural Language Generation

2021-12-13 09:56:27
Hao Xue, Flora D. Salim, Yongli Ren, Charles L. A. Clarke

Abstract

Existing human mobility forecasting models follow the standard design of the time-series prediction model which takes a series of numerical values as input to generate a numerical value as a prediction. Although treating this as a regression problem seems straightforward, incorporating various contextual information such as the semantic category information of each Place-of-Interest (POI) is a necessary step, and often the bottleneck, in designing an effective mobility prediction model. As opposed to the typical approach, we treat forecasting as a translation problem and propose a novel forecasting through a language generation pipeline. The paper aims to address the human mobility forecasting problem as a language translation task in a sequence-to-sequence manner. A mobility-to-language template is first introduced to describe the numerical mobility data as natural language sentences. The core intuition of the human mobility forecasting translation task is to convert the input mobility description sentences into a future mobility description from which the prediction target can be obtained. Under this pipeline, a two-branch network, SHIFT (Translating Human Mobility Forecasting), is designed. Specifically, it consists of one main branch for language generation and one auxiliary branch to directly learn mobility patterns. During the training, we develop a momentum mode for better connecting and training the two branches. Extensive experiments on three real-world datasets demonstrate that the proposed SHIFT is effective and presents a new revolutionary approach to forecasting human mobility.

Abstract (translated)

URL

https://arxiv.org/abs/2112.11481

PDF

https://arxiv.org/pdf/2112.11481.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot