Paper Reading AI Learner

Evaluating the Robustness of Deep Reinforcement Learning for Autonomous and Adversarial Policies in a Multi-agent Urban Driving Environment

2021-12-22 15:14:50
Aizaz Sharif, Dusica Marijan

Abstract

Deep reinforcement learning is actively used for training autonomous driving agents in a vision-based urban simulated environment. Due to the large availability of various reinforcement learning algorithms, we are still unsure of which one works better while training autonomous cars in single-agent as well as multi-agent driving environments. A comparison of deep reinforcement learning in vision-based autonomous driving will open up the possibilities for training better autonomous car policies. Also, autonomous cars trained on deep reinforcement learning-based algorithms are known for being vulnerable to adversarial attacks, and we have less information on which algorithms would act as a good adversarial agent. In this work, we provide a systematic evaluation and comparative analysis of 6 deep reinforcement learning algorithms for autonomous and adversarial driving in four-way intersection scenario. Specifically, we first train autonomous cars using state-of-the-art deep reinforcement learning algorithms. Second, we test driving capabilities of the trained autonomous policies in single-agent as well as multi-agent scenarios. Lastly, we use the same deep reinforcement learning algorithms to train adversarial driving agents, in order to test the driving performance of autonomous cars and look for possible collision and offroad driving scenarios. We perform experiments by using vision-only high fidelity urban driving simulated environments.

Abstract (translated)

URL

https://arxiv.org/abs/2112.11947

PDF

https://arxiv.org/pdf/2112.11947.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot