Paper Reading AI Learner

Mixed Precision of Quantization of Transformer Language Models for Speech Recognition

2021-11-29 09:57:00
Junhao Xu, Shoukang Hu, Jianwei Yu, Xunying Liu, Helen Meng

Abstract

State-of-the-art neural language models represented by Transformers are becoming increasingly complex and expensive for practical applications. Low-bit deep neural network quantization techniques provides a powerful solution to dramatically reduce their model size. Current low-bit quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of the system to quantization errors. To this end, novel mixed precision DNN quantization methods are proposed in this paper. The optimal local precision settings are automatically learned using two techniques. The first is based on a quantization sensitivity metric in the form of Hessian trace weighted quantization perturbation. The second is based on mixed precision Transformer architecture search. Alternating direction methods of multipliers (ADMM) are used to efficiently train mixed precision quantized DNN systems. Experiments conducted on Penn Treebank (PTB) and a Switchboard corpus trained LF-MMI TDNN system suggest the proposed mixed precision Transformer quantization techniques achieved model size compression ratios of up to 16 times over the full precision baseline with no recognition performance degradation. When being used to compress a larger full precision Transformer LM with more layers, overall word error rate (WER) reductions up to 1.7% absolute (18% relative) were obtained.

Abstract (translated)

URL

https://arxiv.org/abs/2112.11540

PDF

https://arxiv.org/pdf/2112.11540.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot