Paper Reading AI Learner

The brain as a probabilistic transducer: an evolutionarily plausible network architecture for knowledge representation, computation, and behavior

2021-12-26 14:37:47
Joseph Y. Halpern, Arnon Lotem

Abstract

We offer a general theoretical framework for brain and behavior that is evolutionarily and computationally plausible. The brain in our abstract model is a network of nodes and edges. Although it has some similarities to standard neural network models, as we show, there are some significant differences. Both nodes and edges in our network have weights and activation levels. They act as probabilistic transducers that use a set of relatively simple rules to determine how activation levels and weights are affected by input, generate output, and affect each other. We show that these simple rules enable a learning process that allows the network to represent increasingly complex knowledge, and simultaneously to act as a computing device that facilitates planning, decision-making, and the execution of behavior. By specifying the innate (genetic) components of the network, we show how evolution could endow the network with initial adaptive rules and goals that are then enriched through learning. We demonstrate how the developing structure of the network (which determines what the brain can do and how well) is critically affected by the co-evolved coordination between the mechanisms affecting the distribution of data input and those determining the learning parameters (used in the programs run by nodes and edges). Finally, we consider how the model accounts for various findings in the field of learning and decision making, how it can address some challenging problems in mind and behavior, such as those related to setting goals and self-control, and how it can help understand some cognitive disorders.

Abstract (translated)

URL

https://arxiv.org/abs/2112.13388

PDF

https://arxiv.org/pdf/2112.13388.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot