Paper Reading AI Learner

Perlin Noise Improve Adversarial Robustness

2021-12-26 15:58:28
Chengjun Tang, Kun Zhang, Chunfang Xing, Yong Ding, Zengmin Xu

Abstract

Adversarial examples are some special input that can perturb the output of a deep neural network, in order to make produce intentional errors in the learning algorithms in the production environment. Most of the present methods for generating adversarial examples require gradient information. Even universal perturbations that are not relevant to the generative model rely to some extent on gradient information. Procedural noise adversarial examples is a new way of adversarial example generation, which uses computer graphics noise to generate universal adversarial perturbations quickly while not relying on gradient information. Combined with the defensive idea of adversarial training, we use Perlin noise to train the neural network to obtain a model that can defend against procedural noise adversarial examples. In combination with the use of model fine-tuning methods based on pre-trained models, we obtain faster training as well as higher accuracy. Our study shows that procedural noise adversarial examples are defensible, but why procedural noise can generate adversarial examples and how to defend against other kinds of procedural noise adversarial examples that may emerge in the future remain to be investigated.

Abstract (translated)

URL

https://arxiv.org/abs/2112.13408

PDF

https://arxiv.org/pdf/2112.13408.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot