Paper Reading AI Learner

GPS: A Policy-driven Sampling Approach for Graph Representation Learning

2021-12-29 09:59:53
Tiehua Zhang, Yuze Liu, Xin Chen, Xiaowei Huang, Feng Zhu, Xi Zheng

Abstract

Graph representation learning has drawn increasing attention in recent years, especially for learning the low dimensional embedding at both node and graph level for classification and recommendations tasks. To enable learning the representation on the large-scale graph data in the real world, numerous research has focused on developing different sampling strategies to facilitate the training process. Herein, we propose an adaptive Graph Policy-driven Sampling model (GPS), where the influence of each node in the local neighborhood is realized through the adaptive correlation calculation. Specifically, the selections of the neighbors are guided by an adaptive policy algorithm, contributing directly to the message aggregation, node embedding updating, and graph level readout steps. We then conduct comprehensive experiments against baseline methods on graph classification tasks from various perspectives. Our proposed model outperforms the existing ones by 3%-8% on several vital benchmarks, achieving state-of-the-art performance in real-world datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2112.14482

PDF

https://arxiv.org/pdf/2112.14482


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot