Paper Reading AI Learner

Speedup deep learning models on GPU by taking advantage of efficient unstructured pruning and bit-width reduction

2021-12-28 19:36:41
Marcin Pietroń, Dominik Żurek

Abstract

This work is focused on the pruning of some convolutional neural networks (CNNs) and improving theirs efficiency on graphic processing units (GPU) by using a direct sparse algorithm. The Nvidia deep neural network (cuDnn) library is the most effective implementations of deep learning (DL) algorithms for GPUs. GPUs are the most commonly used accelerators for deep learning computations. One of the most common techniques for improving the efficiency of CNN models is weight pruning and quantization. There are two main types of pruning: structural and non-structural. The first enables much easier acceleration on many type of accelerators, but with this type it is difficult to achieve a sparsity level and accuracy as high as that obtained with the second type. Non-structural pruning with retraining can generate a weight tensors up to 90% or more of sparsity in some deep CNN models. In this article the pruning algorithm is presented which makes it possible to achieve high sparsity levels without accuracy drop. In the next stage the linear and non-linear quantization is adapted for further time and footprint reduction. This paper is an extended of previously published paper concerning effective pruning techniques and present real models pruned with high sparsities and reduced precision which can achieve better performance than the CuDnn library.

Abstract (translated)

URL

https://arxiv.org/abs/2112.15445

PDF

https://arxiv.org/pdf/2112.15445.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot