Paper Reading AI Learner

Learning Inception Attention for Image Synthesis and Image Recognition

2021-12-29 19:38:30
Jianghao Shen, Tianfu Wu

Abstract

Image synthesis and image recognition have witnessed remarkable progress, but often at the expense of computationally expensive training and inference. Learning lightweight yet expressive deep model has emerged as an important and interesting direction. Inspired by the well-known split-transform-aggregate design heuristic in the Inception building block, this paper proposes a Skip-Layer Inception Module (SLIM) that facilitates efficient learning of image synthesis models, and a same-layer variant (dubbed as SLIM too) as a stronger alternative to the well-known ResNeXts for image recognition. In SLIM, the input feature map is first split into a number of groups (e.g., 4).Each group is then transformed to a latent style vector(via channel-wise attention) and a latent spatial mask (via spatial attention). The learned latent masks and latent style vectors are aggregated to modulate the target feature map. For generative learning, SLIM is built on a recently proposed lightweight Generative Adversarial Networks (i.e., FastGANs) which present a skip-layer excitation(SLE) module. For few-shot image synthesis tasks, the proposed SLIM achieves better performance than the SLE work and other related methods. For one-shot image synthesis tasks, it shows stronger capability of preserving images structures than prior arts such as the SinGANs. For image classification tasks, the proposed SLIM is used as a drop-in replacement for convolution layers in ResNets (resulting in ResNeXt-like models) and achieves better accuracy in theImageNet-1000 dataset, with significantly smaller model complexity

Abstract (translated)

URL

https://arxiv.org/abs/2112.14804

PDF

https://arxiv.org/pdf/2112.14804.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot