Paper Reading AI Learner

Fast and High-Quality Image Denoising via Malleable Convolutions

2022-01-02 18:35:20
Yifan Jiang, Bart Wronski, Ben Mildenhall, Jon Barron, Zhangyang Wang, Tianfan Xue

Abstract

Many image processing networks apply a single set of static convolutional kernels across the entire input image, which is sub-optimal for natural images, as they often consist of heterogeneous visual patterns. Recent work in classification, segmentation, and image restoration has demonstrated that dynamic kernels outperform static kernels at modeling local image statistics. However, these works often adopt per-pixel convolution kernels, which introduce high memory and computation costs. To achieve spatial-varying processing without significant overhead, we present \textbf{Malle}able \textbf{Conv}olution (\textbf{MalleConv}), as an efficient variant of dynamic convolution. The weights of \ours are dynamically produced by an efficient predictor network capable of generating content-dependent outputs at specific spatial locations. Unlike previous works, \ours generates a much smaller set of spatially-varying kernels from input, which enlarges the network's receptive field and significantly reduces computational and memory costs. These kernels are then applied to a full-resolution feature map through an efficient slice-and-conv operator with minimum memory overhead. We further build a efficient denoising network using MalleConv, coined as \textbf{MalleNet}. It achieves high quality results without very deep architecture, \eg, it is 8.91$\times$ faster than the best performed denoising algorithms (SwinIR), while maintaining similar performance. We also show that a single \ours added to a standard convolution-based backbones can contribute significantly reduce the computational cost or boost image quality at similar cost. Project page: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2201.00392

PDF

https://arxiv.org/pdf/2201.00392.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot