Paper Reading AI Learner

Salient Object Detection by LTP Texture Characterization on Opposing Color Pairs under SLICO Superpixel Constraint

2022-01-03 00:03:50
Didier Ndayikengurukiye, Max Mignotte

Abstract

The effortless detection of salient objects by humans has been the subject of research in several fields, including computer vision as it has many applications. However, salient object detection remains a challenge for many computer models dealing with color and textured images. Herein, we propose a novel and efficient strategy, through a simple model, almost without internal parameters, which generates a robust saliency map for a natural image. This strategy consists of integrating color information into local textural patterns to characterize a color micro-texture. Most models in the literature that use the color and texture features treat them separately. In our case, it is the simple, yet powerful LTP (Local Ternary Patterns) texture descriptor applied to opposing color pairs of a color space that allows us to achieve this end. Each color micro-texture is represented by vector whose components are from a superpixel obtained by SLICO (Simple Linear Iterative Clustering with zero parameter) algorithm which is simple, fast and exhibits state-of-the-art boundary adherence. The degree of dissimilarity between each pair of color micro-texture is computed by the FastMap method, a fast version of MDS (Multi-dimensional Scaling), that considers the color micro-textures non-linearity while preserving their distances. These degrees of dissimilarity give us an intermediate saliency map for each RGB, HSL, LUV and CMY color spaces. The final saliency map is their combination to take advantage of the strength of each of them. The MAE (Mean Absolute Error) and F$_{\beta}$ measures of our saliency maps, on the complex ECSSD dataset show that our model is both simple and efficient, outperforming several state-of-the-art models.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00439

PDF

https://arxiv.org/pdf/2201.00439.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot