Paper Reading AI Learner

Compression-Resistant Backdoor Attack against Deep Neural Networks

2022-01-03 14:23:58
Mingfu Xue, Xin Wang, Shichang Sun, Yushu Zhang, Jian Wang, Weiqiang Liu

Abstract

In recent years, many backdoor attacks based on training data poisoning have been proposed. However, in practice, those backdoor attacks are vulnerable to image compressions. When backdoor instances are compressed, the feature of specific backdoor trigger will be destroyed, which could result in the backdoor attack performance deteriorating. In this paper, we propose a compression-resistant backdoor attack based on feature consistency training. To the best of our knowledge, this is the first backdoor attack that is robust to image compressions. First, both backdoor images and their compressed versions are input into the deep neural network (DNN) for training. Then, the feature of each image is extracted by internal layers of the DNN. Next, the feature difference between backdoor images and their compressed versions are minimized. As a result, the DNN treats the feature of compressed images as the feature of backdoor images in feature space. After training, the backdoor attack against DNN is robust to image compression. Furthermore, we consider three different image compressions (i.e., JPEG, JPEG2000, WEBP) in feature consistency training, so that the backdoor attack is robust to multiple image compression algorithms. Experimental results demonstrate the effectiveness and robustness of the proposed backdoor attack. When the backdoor instances are compressed, the attack success rate of common backdoor attack is lower than 10%, while the attack success rate of our compression-resistant backdoor is greater than 97%. The compression-resistant attack is still robust even when the backdoor images are compressed with low compression quality. In addition, extensive experiments have demonstrated that, our compression-resistant backdoor attack has the generalization ability to resist image compression which is not used in the training process.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00672

PDF

https://arxiv.org/pdf/2201.00672.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot