Paper Reading AI Learner

KerGNNs: Interpretable Graph Neural Networks with Graph Kernels

2022-01-03 06:16:30
Aosong Feng, Chenyu You, Shiqiang Wang, Leandros Tassiulas

Abstract

Graph kernels are historically the most widely-used technique for graph classification tasks. However, these methods suffer from limited performance because of the hand-crafted combinatorial features of graphs. In recent years, graph neural networks (GNNs) have become the state-of-the-art method in downstream graph-related tasks due to their superior performance. Most GNNs are based on Message Passing Neural Network (MPNN) frameworks. However, recent studies show that MPNNs can not exceed the power of the Weisfeiler-Lehman (WL) algorithm in graph isomorphism test. To address the limitations of existing graph kernel and GNN methods, in this paper, we propose a novel GNN framework, termed \textit{Kernel Graph Neural Networks} (KerGNNs), which integrates graph kernels into the message passing process of GNNs. Inspired by convolution filters in convolutional neural networks (CNNs), KerGNNs adopt trainable hidden graphs as graph filters which are combined with subgraphs to update node embeddings using graph kernels. In addition, we show that MPNNs can be viewed as special cases of KerGNNs. We apply KerGNNs to multiple graph-related tasks and use cross-validation to make fair comparisons with benchmarks. We show that our method achieves competitive performance compared with existing state-of-the-art methods, demonstrating the potential to increase the representation ability of GNNs. We also show that the trained graph filters in KerGNNs can reveal the local graph structures of the dataset, which significantly improves the model interpretability compared with conventional GNN models.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00491

PDF

https://arxiv.org/pdf/2201.00491.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot