Paper Reading AI Learner

Transformer Embeddings of Irregularly Spaced Events and Their Participants

2021-12-31 20:00:29
Chenghao Yang, Hongyuan Mei, Jason Eisner

Abstract

We propose an approach to modeling irregularly spaced sequences of discrete events. We begin with a continuous-time variant of the Transformer, which was originally formulated (Vaswani et al., 2017) for sequences without timestamps. We embed a possible event (or other boolean fact) at time $t$ by using attention over the events that occurred at times $< t$ (and the facts that were true when they occurred). We control this attention using pattern-matching logic rules that relate events and facts that share participants. These rules determine which previous events will be attended to, as well as how to transform the embeddings of the events and facts into the attentional queries, keys, and values. Other logic rules describe how to change the set of facts in response to events. Our approach closely follows Mei et al. (2020a), and adopts their Datalog Through Time formalism for logic rules. As in that work, a domain expert first writes a set of logic rules that establishes the set of possible events and other facts at each time $t$. Each possible event or other fact is embedded using a neural architecture that is derived from the rules that established it. Our only difference from Mei et al. (2020a) is that we derive a flatter, attention-based neural architecture whereas they used a more serial LSTM architecture. We find that our attention-based approach performs about equally well on the RoboCup dataset, where the logic rules play an important role in improving performance. We also compared these two methods with two previous attention-based methods (Zuo et al., 2020; Zhang et al., 2020a) on simpler synthetic and real domains without logic rules, and found our proposed approach to be at least as good, and sometimes better, than each of the other three methods.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00044

PDF

https://arxiv.org/pdf/2201.00044.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot