Paper Reading AI Learner

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

2022-01-01 06:51:03
Bao Hieu Tran, Thanh Le-Cong, Huu Manh Nguyen, Duc Anh Le, Thanh Hung Nguyen, Phi Le Nguyen

Abstract

In the last decades, scene text recognition has gained worldwide attention from both the academic community and actual users due to its importance in a wide range of applications. Despite achievements in optical character recognition, scene text recognition remains challenging due to inherent problems such as distortions or irregular layout. Most of the existing approaches mainly leverage recurrence or convolution-based neural networks. However, while recurrent neural networks (RNNs) usually suffer from slow training speed due to sequential computation and encounter problems as vanishing gradient or bottleneck, CNN endures a trade-off between complexity and performance. In this paper, we introduce SAFL, a self-attention-based neural network model with the focal loss for scene text recognition, to overcome the limitation of the existing approaches. The use of focal loss instead of negative log-likelihood helps the model focus more on low-frequency samples training. Moreover, to deal with the distortions and irregular texts, we exploit Spatial TransformerNetwork (STN) to rectify text before passing to the recognition network. We perform experiments to compare the performance of the proposed model with seven benchmarks. The numerical results show that our model achieves the best performance.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00132

PDF

https://arxiv.org/pdf/2201.00132.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot