Paper Reading AI Learner

A Gradient Mapping Guided Explainable Deep Neural Network for Extracapsular Extension Identification in 3D Head and Neck Cancer Computed Tomography Images

2022-01-03 22:29:57
Yibin Wang, Abdur Rahman, W. Neil. Duggar, P. Russell Roberts, Toms V. Thomas, Linkan Bian, Haifeng Wang

Abstract

Diagnosis and treatment management for head and neck squamous cell carcinoma (HNSCC) is guided by routine diagnostic head and neck computed tomography (CT) scans to identify tumor and lymph node features. Extracapsular extension (ECE) is a strong predictor of patients' survival outcomes with HNSCC. It is essential to detect the occurrence of ECE as it changes staging and management for the patients. Current clinical ECE detection relies on visual identification and pathologic confirmation conducted by radiologists. Machine learning (ML)-based ECE diagnosis has shown high potential in the recent years. However, manual annotation of lymph node region is a required data preprocessing step in most of the current ML-based ECE diagnosis studies. In addition, this manual annotation process is time-consuming, labor-intensive, and error-prone. Therefore, in this paper, we propose a Gradient Mapping Guided Explainable Network (GMGENet) framework to perform ECE identification automatically without requiring annotated lymph node region information. The gradient-weighted class activation mapping (Grad-CAM) technique is proposed to guide the deep learning algorithm to focus on the regions that are highly related to ECE. Informative volumes of interest (VOIs) are extracted without labeled lymph node region information. In evaluation, the proposed method is well-trained and tested using cross validation, achieving test accuracy and AUC of 90.2% and 91.1%, respectively. The presence or absence of ECE has been analyzed and correlated with gold standard histopathological findings.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00895

PDF

https://arxiv.org/pdf/2201.00895.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot