Paper Reading AI Learner

SMDT: Selective Memory-Augmented Neural Document Translation

2022-01-05 14:23:30
Xu Zhang, Jian Yang, Haoyang Huang, Shuming Ma, Dongdong Zhang, Jinlong Li, Furu Wei

Abstract

Existing document-level neural machine translation (NMT) models have sufficiently explored different context settings to provide guidance for target generation. However, little attention is paid to inaugurate more diverse context for abundant context information. In this paper, we propose a Selective Memory-augmented Neural Document Translation model to deal with documents containing large hypothesis space of the context. Specifically, we retrieve similar bilingual sentence pairs from the training corpus to augment global context and then extend the two-stream attention model with selective mechanism to capture local context and diverse global contexts. This unified approach allows our model to be trained elegantly on three publicly document-level machine translation datasets and significantly outperforms previous document-level NMT models.

Abstract (translated)

URL

https://arxiv.org/abs/2201.01631

PDF

https://arxiv.org/pdf/2201.01631.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot