Paper Reading AI Learner

Latent Vector Expansion using Autoencoder for Anomaly Detection

2022-01-05 02:28:38
UJu Gim, YeongHyeon Park

Abstract

Deep learning methods can classify various unstructured data such as images, language, and voice as input data. As the task of classifying anomalies becomes more important in the real world, various methods exist for classifying using deep learning with data collected in the real world. As the task of classifying anomalies becomes more important in the real world, there are various methods for classifying using deep learning with data collected in the real world. Among the various methods, the representative approach is a method of extracting and learning the main features based on a transition model from pre-trained models, and a method of learning an autoencoderbased structure only with normal data and classifying it as abnormal through a threshold value. However, if the dataset is imbalanced, even the state-of-the-arts models do not achieve good performance. This can be addressed by augmenting normal and abnormal features in imbalanced data as features with strong distinction. We use the features of the autoencoder to train latent vectors from low to high dimensionality. We train normal and abnormal data as a feature that has a strong distinction among the features of imbalanced data. We propose a latent vector expansion autoencoder model that improves classification performance at imbalanced data. The proposed method shows performance improvement compared to the basic autoencoder using imbalanced anomaly dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2201.01416

PDF

https://arxiv.org/pdf/2201.01416.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot