Paper Reading AI Learner

Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in FLAIR Images

2022-01-05 21:37:43
Mehdi SadeghiBakhi, Hamidreza Pourreza, Hamidreza Mahyar

Abstract

Objective: Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance Imaging (MRI). Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions which are not beneficial for patients in terms of cost, time, and usability. The authors of the present paper propose a method employing just one modality (FLAIR image) to segment MS lesions accurately. Methods: A patch-based Convolutional Neural Network (CNN) is designed, inspired by 3D-ResNet and spatial-channel attention module, to segment MS lesions. The proposed method consists of three stages: (1) the contrast-limited adaptive histogram equalization (CLAHE) is applied to the original images and concatenated to the extracted edges in order to create 4D images; (2) the patches of size 80 * 80 * 80 * 2 are randomly selected from the 4D images; and (3) the extracted patches are passed into an attention-based CNN which is used to segment the lesions. Finally, the proposed method was compared to previous studies of the same dataset. Results: The current study evaluates the model, with a test set of ISIB challenge data. Experimental results illustrate that the proposed approach significantly surpasses existing methods in terms of Dice similarity and Absolute Volume Difference while the proposed method use just one modality (FLAIR) to segment the lesions. Conclusions: The authors have introduced an automated approach to segment the lesions which is based on, at most, two modalities as an input. The proposed architecture is composed of convolution, deconvolution, and an SCA-VoxRes module as an attention module. The results show, the proposed method outperforms well compare to other methods.

Abstract (translated)

URL

https://arxiv.org/abs/2201.01832

PDF

https://arxiv.org/pdf/2201.01832.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot