Paper Reading AI Learner

Semantics-driven Attentive Few-shot Learning over Clean and Noisy Samples

2022-01-09 16:16:23
Orhun Buğra Baran, Ramazan Gökberk Cinbiş

Abstract

Over the last couple of years few-shot learning (FSL) has attracted great attention towards minimizing the dependency on labeled training examples. An inherent difficulty in FSL is the handling of ambiguities resulting from having too few training samples per class. To tackle this fundamental challenge in FSL, we aim to train meta-learner models that can leverage prior semantic knowledge about novel classes to guide the classifier synthesis process. In particular, we propose semantically-conditioned feature attention and sample attention mechanisms that estimate the importance of representation dimensions and training instances. We also study the problem of sample noise in FSL, towards the utilization of meta-learners in more realistic and imperfect settings. Our experimental results demonstrate the effectiveness of the proposed semantic FSL model with and without sample noise.

Abstract (translated)

URL

https://arxiv.org/abs/2201.03043

PDF

https://arxiv.org/pdf/2201.03043.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot