Paper Reading AI Learner

A Novel Home-Built Metrology to Analyze Oral Fluid Droplets and Quantify the Efficacy of Masks

2022-01-03 19:20:05
Ava Tan Bhowmik

Abstract

Wearing masks is crucial to preventing the spread of potentially pathogen-containing droplets, especially amidst the COVID-19 pandemic. However, not all face coverings are equally effective and most experiments evaluating mask efficacy are very expensive and complex to operate. In this work, a novel, home-built, low-cost, and accurate metrology to visualize orally-generated fluid droplets has been developed. The project includes setup optimization, data collection, data analysis, and applications. The final materials chosen were quinine-containing tonic water, 397-402 nm wavelength UV tube lights, an iPhone and tripod, string, and a spray bottle. The experiment took place in a dark closet with a dark background. During data collection, the test subject first wets their mouth with an ingestible fluorescent liquid (tonic water) and speaks, sneezes, or coughs under UV darklight. The fluorescence from the tonic water droplets generated can be visualized, recorded by an iPhone 8+ camera in slo-mo (240 fps), and analyzed. The software VLC is used for frame separation and Fiji/ImageJ is used for image processing and analysis. The dependencies of oral fluid droplet generation and propagation on different phonics, the loudness of speech, and the type of expiratory event were studied in detail and established using the metrology developed. The efficacy of different types of masks was evaluated and correlated with fabric microstructures. All masks blocked droplets to varying extent. Masks with smaller-sized pores and thicker material were found to block the most droplets. This low-cost technique can be easily constructed at home using materials that total to a cost of less than $50. Despite the minimal cost, the method is very accurate and the data is quantifiable.

Abstract (translated)

URL

https://arxiv.org/abs/2201.03993

PDF

https://arxiv.org/pdf/2201.03993.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot