Paper Reading AI Learner

Iterative RAKI with Complex-Valued Convolution for Improved Image Reconstruction with Limited Scan-Specific Training Samples

2022-01-10 16:14:27
Peter Dawood, Martin Blaimer, Felix Breuer, Paul R. Burd, István Homolya, Peter M. Jakob, Johannes Oberberger

Abstract

MRI scan time reduction is commonly achieved by Parallel Imaging methods, typically based on uniform undersampling of the inverse image space (a.k.a. k-space) and simultaneous signal reception with multiple receiver coils. The GRAPPA method interpolates missing k-space signals by linear combination of adjacent, acquired signals across all coils, and can be described by a convolution in k-space. Recently, a more generalized method called RAKI was introduced. RAKI is a deep-learning method that generalizes GRAPPA with additional convolution layers, on which a non-linear activation function is applied. This enables non-linear estimation of missing signals by convolutional neural networks. In analogy to GRAPPA, the convolution kernels in RAKI are trained using scan-specific training samples obtained from auto-calibration-signals (ACS). RAKI provides superior reconstruction quality compared to GRAPPA, however, often requires much more ACS due to its increased number of unknown parameters. In order to overcome this limitation, this study investigates the influence of training data on the reconstruction quality for standard 2D imaging, with particular focus on its amount and contrast information. Furthermore, an iterative k-space interpolation approach (iRAKI) is evaluated, which includes training data augmentation via an initial GRAPPA reconstruction, and refinement of convolution filters by iterative training. Using only 18, 20 and 25 ACS lines (8%), iRAKI outperforms RAKI by suppressing residual artefacts occurring at accelerations factors R=4 and R=5, and yields strong noise suppression in comparison to GRAPPA, underlined by quantitative quality metrics. Combination with a phase-constraint yields further improvement. Additionally, iRAKI shows better performance than GRAPPA and RAKI in case of pre-scan calibration and strongly varying contrast between training- and undersampled data.

Abstract (translated)

URL

https://arxiv.org/abs/2201.03560

PDF

https://arxiv.org/pdf/2201.03560.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot