Paper Reading AI Learner

CausalKG: Causal Knowledge Graph Explainability using interventional and counterfactual reasoning

2022-01-06 20:27:19
Utkarshani Jaimini, Amit Sheth

Abstract

Humans use causality and hypothetical retrospection in their daily decision-making, planning, and understanding of life events. The human mind, while retrospecting a given situation, think about questions such as "What was the cause of the given situation?", "What would be the effect of my action?", or "Which action led to this effect?". It develops a causal model of the world, which learns with fewer data points, makes inferences, and contemplates counterfactual scenarios. The unseen, unknown, scenarios are known as counterfactuals. AI algorithms use a representation based on knowledge graphs (KG) to represent the concepts of time, space, and facts. A KG is a graphical data model which captures the semantic relationships between entities such as events, objects, or concepts. The existing KGs represent causal relationships extracted from texts based on linguistic patterns of noun phrases for causes and effects as in ConceptNet and WordNet. The current causality representation in KGs makes it challenging to support counterfactual reasoning. A richer representation of causality in AI systems using a KG-based approach is needed for better explainability, and support for intervention and counterfactuals reasoning, leading to improved understanding of AI systems by humans. The causality representation requires a higher representation framework to define the context, the causal information, and the causal effects. The proposed Causal Knowledge Graph (CausalKG) framework, leverages recent progress of causality and KG towards explainability. CausalKG intends to address the lack of a domain adaptable causal model and represent the complex causal relations using the hyper-relational graph representation in the KG. We show that the CausalKG's interventional and counterfactual reasoning can be used by the AI system for the domain explainability.

Abstract (translated)

URL

https://arxiv.org/abs/2201.03647

PDF

https://arxiv.org/pdf/2201.03647.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot