Paper Reading AI Learner

Learning Logic Programs From Noisy Failures

2021-12-28 16:48:00
John Wahlig

Abstract

Inductive Logic Programming (ILP) is a form of machine learning (ML) which in contrast to many other state of the art ML methods typically produces highly interpretable and reusable models. However, many ILP systems lack the ability to naturally learn from any noisy or partially misclassified training data. We introduce the relaxed learning from failures approach to ILP, a noise handling modification of the previously introduced learning from failures (LFF) approach which is incapable of handling noise. We additionally introduce the novel Noisy Popper ILP system which implements this relaxed approach and is a modification of the existing Popper system. Like Popper, Noisy Popper takes a generate-test-constrain loop to search its hypothesis space wherein failed hypotheses are used to construct hypothesis constraints. These constraints are used to prune the hypothesis space, making the hypothesis search more efficient. However, in the relaxed setting, constraints are generated in a more lax fashion as to avoid allowing noisy training data to lead to hypothesis constraints which prune optimal hypotheses. Constraints unique to the relaxed setting are generated via hypothesis comparison. Additional constraints are generated by weighing the accuracy of hypotheses against their sizes to avoid overfitting through an application of the minimum description length. We support this new setting through theoretical proofs as well as experimental results which suggest that Noisy Popper improves the noise handling capabilities of Popper but at the cost of overall runtime efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2201.03702

PDF

https://arxiv.org/pdf/2201.03702.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot