Paper Reading AI Learner

Reward Relabelling for combined Reinforcement and Imitation Learning on sparse-reward tasks

2022-01-11 08:35:18
Jesus Bujalance Martin, Fabien Moutarde

Abstract

During recent years, deep reinforcement learning (DRL) has made successful incursions into complex decision-making applications such as robotics, autonomous driving or video games. In the search for more sample-efficient algorithms, a promising direction is to leverage as much external off-policy data as possible. One staple of this data-driven approach is to learn from expert demonstrations. In the past, multiple ideas have been proposed to make good use of the demonstrations added to the replay buffer, such as pretraining on demonstrations only or minimizing additional cost functions. We present a new method, able to leverage demonstrations and episodes collected online in any sparse-reward environment with any off-policy algorithm. Our method is based on a reward bonus given to demonstrations and successful episodes, encouraging expert imitation and self-imitation. First, we give a reward bonus to the transitions coming from demonstrations to encourage the agent to match the demonstrated behaviour. Then, upon collecting a successful episode, we relabel its transitions with the same bonus before adding them to the replay buffer, encouraging the agent to also match its previous successes. Our experiments focus on manipulation robotics, specifically on three tasks for a 6 degrees-of-freedom robotic arm in simulation. We show that our method based on reward relabeling improves the performance of the base algorithm (SAC and DDPG) on these tasks, even in the absence of demonstrations. Furthermore, integrating into our method two improvements from previous works allows our approach to outperform all baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2201.03834

PDF

https://arxiv.org/pdf/2201.03834.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot