Paper Reading AI Learner

S$^2$FPR: Crowd Counting via Self-Supervised Coarse to Fine Feature Pyramid Ranking

2022-01-13 07:25:06
Jiaqi Gao, Zhizhong Huang, Yiming Lei, James Z. Wang, Fei-Yue Wang, Junping Zhang

Abstract

Most conventional crowd counting methods utilize a fully-supervised learning framework to learn a mapping between scene images and crowd density maps. Under the circumstances of such fully-supervised training settings, a large quantity of expensive and time-consuming pixel-level annotations are required to generate density maps as the supervision. One way to reduce costly labeling is to exploit self-structural information and inner-relations among unlabeled images. Unlike the previous methods utilizing these relations and structural information from the original image level, we explore such self-relations from the latent feature spaces because it can extract more abundant relations and structural information. Specifically, we propose S$^2$FPR which can extract structural information and learn partial orders of coarse-to-fine pyramid features in the latent space for better crowd counting with massive unlabeled images. In addition, we collect a new unlabeled crowd counting dataset (FUDAN-UCC) with 4,000 images in total for training. One by-product is that our proposed S$^2$FPR method can leverage numerous partial orders in the latent space among unlabeled images to strengthen the model representation capability and reduce the estimation errors for the crowd counting task. Extensive experiments on four benchmark datasets, i.e. the UCF-QNRF, the ShanghaiTech PartA and PartB, and the UCF-CC-50, show the effectiveness of our method compared with previous semi-supervised methods. The source code and dataset are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2201.04819

PDF

https://arxiv.org/pdf/2201.04819.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot