Paper Reading AI Learner

Criticality-Based Varying Step-Number Algorithm for Reinforcement Learning

2022-01-13 15:46:59
Yitzhak Spielberg, Amos Azaria

Abstract

In the context of reinforcement learning we introduce the concept of criticality of a state, which indicates the extent to which the choice of action in that particular state influences the expected return. That is, a state in which the choice of action is more likely to influence the final outcome is considered as more critical than a state in which it is less likely to influence the final outcome. We formulate a criticality-based varying step number algorithm (CVS) - a flexible step number algorithm that utilizes the criticality function provided by a human, or learned directly from the environment. We test it in three different domains including the Atari Pong environment, Road-Tree environment, and Shooter environment. We demonstrate that CVS is able to outperform popular learning algorithms such as Deep Q-Learning and Monte Carlo.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05034

PDF

https://arxiv.org/pdf/2201.05034


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot