Paper Reading AI Learner

SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation

2022-01-13 18:41:46
K L Navaneet, Soroush Abbasi Koohpayegani, Ajinkya Tejankar, Hamed Pirsiavash

Abstract

Feature regression is a simple way to distill large neural network models to smaller ones. We show that with simple changes to the network architecture, regression can outperform more complex state-of-the-art approaches for knowledge distillation from self-supervised models. Surprisingly, the addition of a multi-layer perceptron head to the CNN backbone is beneficial even if used only during distillation and discarded in the downstream task. Deeper non-linear projections can thus be used to accurately mimic the teacher without changing inference architecture and time. Moreover, we utilize independent projection heads to simultaneously distill multiple teacher networks. We also find that using the same weakly augmented image as input for both teacher and student networks aids distillation. Experiments on ImageNet dataset demonstrate the efficacy of the proposed changes in various self-supervised distillation settings.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05131

PDF

https://arxiv.org/pdf/2201.05131


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot