Paper Reading AI Learner

How Can Graph Neural Networks Help Document Retrieval: A Case Study on CORD19 with Concept Map Generation

2022-01-12 19:52:29
Hejie Cui, Jiaying Lu, Yao Ge, Carl Yang

Abstract

Graph neural networks (GNNs), as a group of powerful tools for representation learning on irregular data, have manifested superiority in various downstream tasks. With unstructured texts represented as concept maps, GNNs can be exploited for tasks like document retrieval. Intrigued by how can GNNs help document retrieval, we conduct an empirical study on a large-scale multi-discipline dataset CORD-19. Results show that instead of the complex structure-oriented GNNs such as GINs and GATs, our proposed semantics-oriented graph functions achieve better and more stable performance based on the BM25 retrieved candidates. Our insights in this case study can serve as a guideline for future work to develop effective GNNs with appropriate semantics-oriented inductive biases for textual reasoning tasks like document retrieval and classification. All code for this case study is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2201.04672

PDF

https://arxiv.org/pdf/2201.04672.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot