Paper Reading AI Learner

LARD: Large-scale Artificial Disfluency Generation

2022-01-13 16:02:36
T. Passali, T. Mavropoulos, G. Tsoumakas, G. Meditskos, S. Vrochidis

Abstract

Disfluency detection is a critical task in real-time dialogue systems. However, despite its importance, it remains a relatively unexplored field, mainly due to the lack of appropriate datasets. At the same time, existing datasets suffer from various issues, including class imbalance issues, which can significantly affect the performance of the model on rare classes, as it is demonstrated in this paper. To this end, we propose LARD, a method for generating complex and realistic artificial disfluencies with little effort. The proposed method can handle three of the most common types of disfluencies: repetitions, replacements and restarts. In addition, we release a new large-scale dataset with disfluencies that can be used on four different tasks: disfluency detection, classification, extraction and correction. Experimental results on the LARD dataset demonstrate that the data produced by the proposed method can be effectively used for detecting and removing disfluencies, while also addressing limitations of existing datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05041

PDF

https://arxiv.org/pdf/2201.05041


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot