Paper Reading AI Learner

Finding Shortest Path on a Terrain Surface by Using Finite Element Method

2022-01-10 13:49:36
Gokhan Altintas

Abstract

The solution of the shortest path problem on a surface is not only a theoretical problem to be solved in the field of mathematics, but also problems that need to be solved in very different fields such as medicine, defense and construction technologies. When it comes to the land specific, solution algorithms for these problems are also of great importance in terms of determination of the shortest path in an open area where the road will pass in the field of civil engineering, or route determination of manned or unmanned vehicles for various logistic needs, especially in raw terrains. In addition, path finding problems in the raw terrains are also important for manned and unmanned ground vehicles (UGV) used in the defense industry. Within the scope of this study, a method that can be used for instant route determinations within sight range or for route determinations covering wider areas is proposed. Although the examples presented within the scope of the study are land-based, the method can be applied to almost all problem types of similar nature. The approach used in the study can be briefly described as the mechanical analysis of a surface transformed into a structural load bearing system based on mechanical analogies. In this approach, the determination of the shortest path connecting two points can be realized by following the stress-strain values that will occur by moving the points away from each other or by following a linear line that will be formed between two points during the mechanical analysis. If the proposed approach is to be carried out with multiple rigid body dynamics approaches instead of flexible bodies mechanics, it can be carried out easily and very quickly by determining the shortest path between two points or by tracking the forces. However, the proposed approach in this study is presented by simulating examples of flexible bodies using FEM.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06957

PDF

https://arxiv.org/pdf/2201.06957.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot