Paper Reading AI Learner

Multi-View representation learning in Multi-Task Scene

2022-01-15 11:26:28
Run-kun Lu, Jian-wei Liu, Si-ming Lian, Xin Zuo

Abstract

Over recent decades have witnessed considerable progress in whether multi-task learning or multi-view learning, but the situation that consider both learning scenes simultaneously has received not too much attention. How to utilize multiple views latent representation of each single task to improve each learning task performance is a challenge problem. Based on this, we proposed a novel semi-supervised algorithm, termed as Multi-Task Multi-View learning based on Common and Special Features (MTMVCSF). In general, multi-views are the different aspects of an object and every view includes the underlying common or special information of this object. As a consequence, we will mine multiple views jointly latent factor of each learning task which consists of each view special feature and the common feature of all views. By this way, the original multi-task multi-view data has degenerated into multi-task data, and exploring the correlations among multiple tasks enables to make an improvement on the performance of learning algorithm. Another obvious advantage of this approach is that we get latent representation of the set of unlabeled instances by the constraint of regression task with labeled instances. The performance of classification and semi-supervised clustering task in these latent representations perform obviously better than it in raw data. Furthermore, an anti-noise multi-task multi-view algorithm called AN-MTMVCSF is proposed, which has a strong adaptability to noise labels. The effectiveness of these algorithms is proved by a series of well-designed experiments on both real world and synthetic data.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05829

PDF

https://arxiv.org/pdf/2201.05829.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot