Paper Reading AI Learner

Automatic Correction of Syntactic Dependency Annotation Differences

2022-01-15 17:17:55
Andrew Zupon, Andrew Carnie, Michael Hammond, Mihai Surdeanu

Abstract

Annotation inconsistencies between data sets can cause problems for low-resource NLP, where noisy or inconsistent data cannot be as easily replaced compared with resource-rich languages. In this paper, we propose a method for automatically detecting annotation mismatches between dependency parsing corpora, as well as three related methods for automatically converting the mismatches. All three methods rely on comparing an unseen example in a new corpus with similar examples in an existing corpus. These three methods include a simple lexical replacement using the most frequent tag of the example in the existing corpus, a GloVe embedding-based replacement that considers a wider pool of examples, and a BERT embedding-based replacement that uses contextualized embeddings to provide examples fine-tuned to our specific data. We then evaluate these conversions by retraining two dependency parsers -- Stanza (Qi et al. 2020) and Parsing as Tagging (PaT) (Vacareanu et al. 2020) -- on the converted and unconverted data. We find that applying our conversions yields significantly better performance in many cases. Some differences observed between the two parsers are observed. Stanza has a more complex architecture with a quadratic algorithm, so it takes longer to train, but it can generalize better with less data. The PaT parser has a simpler architecture with a linear algorithm, speeding up training time but requiring more training data to reach comparable or better performance.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05891

PDF

https://arxiv.org/pdf/2201.05891.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot