Paper Reading AI Learner

Neighboring Backdoor Attacks on Graph Convolutional Network

2022-01-17 03:49:32
Liang Chen, Qibiao Peng, Jintang Li, Yang Liu, Jiawei Chen, Yong Li, Zibin Zheng

Abstract

Backdoor attacks have been widely studied to hide the misclassification rules in the normal models, which are only activated when the model is aware of the specific inputs (i.e., the trigger). However, despite their success in the conventional Euclidean space, there are few studies of backdoor attacks on graph structured data. In this paper, we propose a new type of backdoor which is specific to graph data, called neighboring backdoor. Considering the discreteness of graph data, how to effectively design the triggers while retaining the model accuracy on the original task is the major challenge. To address such a challenge, we set the trigger as a single node, and the backdoor is activated when the trigger node is connected to the target node. To preserve the model accuracy, the model parameters are not allowed to be modified. Thus, when the trigger node is not connected, the model performs normally. Under these settings, in this work, we focus on generating the features of the trigger node. Two types of backdoors are proposed: (1) Linear Graph Convolution Backdoor which finds an approximation solution for the feature generation (can be viewed as an integer programming problem) by looking at the linear part of GCNs. (2) Variants of existing graph attacks. We extend current gradient-based attack methods to our backdoor attack scenario. Extensive experiments on two social networks and two citation networks datasets demonstrate that all proposed backdoors can achieve an almost 100\% attack success rate while having no impact on predictive accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06202

PDF

https://arxiv.org/pdf/2201.06202.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot