Paper Reading AI Learner

Digital Twin: From Concept to Practice

2022-01-14 17:41:26
Ashwin Agrawal, Martin Fischer, Vishal Singh

Abstract

Recent technological developments and advances in Artificial Intelligence (AI) have enabled sophisticated capabilities to be a part of Digital Twin (DT), virtually making it possible to introduce automation into all aspects of work processes. Given these possibilities that DT can offer, practitioners are facing increasingly difficult decisions regarding what capabilities to select while deploying a DT in practice. The lack of research in this field has not helped either. It has resulted in the rebranding and reuse of emerging technological capabilities like prediction, simulation, AI, and Machine Learning (ML) as necessary constituents of DT. Inappropriate selection of capabilities in a DT can result in missed opportunities, strategic misalignments, inflated expectations, and risk of it being rejected as just hype by the practitioners. To alleviate this challenge, this paper proposes the digitalization framework, designed and developed by following a Design Science Research (DSR) methodology over a period of 18 months. The framework can help practitioners select an appropriate level of sophistication in a DT by weighing the pros and cons for each level, deciding evaluation criteria for the digital twin system, and assessing the implications of the selected DT on the organizational processes and strategies, and value creation. Three real-life case studies illustrate the application and usefulness of the framework.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06912

PDF

https://arxiv.org/pdf/2201.06912.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot