Paper Reading AI Learner

On Training Targets and Activation Functions for Deep Representation Learning in Text-Dependent Speaker Verification

2022-01-17 14:32:51
Achintya kr. Sarkar, Zheng-Hua Tan

Abstract

Deep representation learning has gained significant momentum in advancing text-dependent speaker verification (TD-SV) systems. When designing deep neural networks (DNN) for extracting bottleneck features, key considerations include training targets, activation functions, and loss functions. In this paper, we systematically study the impact of these choices on the performance of TD-SV. For training targets, we consider speaker identity, time-contrastive learning (TCL) and auto-regressive prediction coding with the first being supervised and the last two being self-supervised. Furthermore, we study a range of loss functions when speaker identity is used as the training target. With regard to activation functions, we study the widely used sigmoid function, rectified linear unit (ReLU), and Gaussian error linear unit (GELU). We experimentally show that GELU is able to reduce the error rates of TD-SV significantly compared to sigmoid, irrespective of training target. Among the three training targets, TCL performs the best. Among the various loss functions, cross entropy, joint-softmax and focal loss functions outperform the others. Finally, score-level fusion of different systems is also able to reduce the error rates. Experiments are conducted on the RedDots 2016 challenge database for TD-SV using short utterances. For the speaker classifications, the well-known Gaussian mixture model-universal background model (GMM-UBM) and i-vector techniques are used.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06426

PDF

https://arxiv.org/pdf/2201.06426.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot