Paper Reading AI Learner

Disentangled Latent Transformer for Interpretable Monocular Height Estimation

2022-01-17 11:42:30
Zhitong Xiong Sining Chen, Yilei Shi, Xiao Xiang Zhu

Abstract

Monocular height estimation (MHE) from remote sensing imagery has high potential in generating 3D city models efficiently for a quick response to natural disasters. Most existing works pursue higher performance. However, there is little research exploring the interpretability of MHE networks. In this paper, we target at exploring how deep neural networks predict height from a single monocular image. Towards a comprehensive understanding of MHE networks, we propose to interpret them from multiple levels: 1) Neurons: unit-level dissection. Exploring the semantic and height selectivity of the learned internal deep representations; 2) Instances: object-level interpretation. Studying the effects of different semantic classes, scales, and spatial contexts on height estimation; 3) Attribution: pixel-level analysis. Understanding which input pixels are important for the height estimation. Based on the multi-level interpretation, a disentangled latent Transformer network is proposed towards a more compact, reliable, and explainable deep model for monocular height estimation. Furthermore, a novel unsupervised semantic segmentation task based on height estimation is first introduced in this work. Additionally, we also construct a new dataset for joint semantic segmentation and height estimation. Our work provides novel insights for both understanding and designing MHE models.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06357

PDF

https://arxiv.org/pdf/2201.06357.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot