Paper Reading AI Learner

Nonlinear Unknown Input Observability and Unknown Input Reconstruction: The General Analytical Solution

2022-01-19 14:09:14
Agostino Martinelli

Abstract

Observability is a fundamental structural property of any dynamic system and describes the possibility of reconstructing the state that characterizes the system from observing its inputs and outputs. Despite the huge effort made to study this property and to introduce analytical criteria able to check whether a dynamic system satisfies this property or not, there is no general analytical criterion to automatically check the state observability when the dynamics are also driven by unknown inputs. Here, we introduce the general analytical solution of this fundamental problem, often called the unknown input observability problem. This paper provides the general analytical solution of this problem, namely, it provides the systematic procedure, based on automatic computation (differentiation and matrix rank determination), that allows us to automatically check the state observability even in the presence of unknown inputs. A first solution of this problem was presented in the second part of the book: "Observability: A New Theory Based on the Group of Invariance" [45]. The solution presented by this paper completes the previous solution in [45]. In particular, the new solution exhaustively accounts for the systems that do not belong to the category of the systems that are canonic with respect to their unknown inputs. The new solution is also provided in the form of a new algorithm. A further novelty with respect to the algorithm provided in [45] consists of a new convergence criterion that holds in all the cases (the convergence criterion of the algorithm provided in [45] can fail in some cases). Finally, we also provide the answer to the problem of unknown input reconstruction which is intimately related to the problem of state observability. We illustrate the implementation of the new algorithm by studying a nonlinear system in the framework of visual-inertial sensor fusion.

Abstract (translated)

URL

https://arxiv.org/abs/2201.07610

PDF

https://arxiv.org/pdf/2201.07610.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot