Paper Reading AI Learner

Demand-Driven Asset Reutilization Analytics

2021-12-28 11:28:11
Abbas Raza Ali, Pitipong J. Lin

Abstract

Manufacturers have long benefited from reusing returned products and parts. This benevolent approach can minimize cost and help the manufacturer to play a role in sustaining the environment, something which is of utmost importance these days because of growing environment concerns. Reuse of returned parts and products aids environment sustainability because doing so helps reduce the use of raw materials, eliminate energy use to produce new parts, and minimize waste materials. However, handling returns effectively and efficiently can be difficult if the processes do not provide the visibility that is necessary to track, manage, and re-use the returns. This paper applies advanced analytics on procurement data to increase reutilization in new build by optimizing Equal-to-New (ETN) parts return. This will reduce 'the spend' on new buy parts for building new product units. The process involves forecasting and matching returns supply to demand for new build. Complexity in the process is the forecasting and matching while making sure a reutilization engineering process is available. Also, this will identify high demand/value/yield parts for development engineering to focus. Analytics has been applied on different levels to enhance the optimization process including forecast of upgraded parts. Machine Learning algorithms are used to build an automated infrastructure that can support the transformation of ETN parts utilization in the procurement parts planning process. This system incorporate returns forecast in the planning cycle to reduce suppliers liability from 9 weeks to 12 months planning cycle, e.g., reduce 5% of 10 million US dollars liability.

Abstract (translated)

URL

https://arxiv.org/abs/2201.07921

PDF

https://arxiv.org/pdf/2201.07921.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot