Paper Reading AI Learner

HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

2022-01-20 07:10:48
Su Zheng, Zhen Li, Yao Lu, Jingbo Gao, Jide Zhang, Lingli Wang

Abstract

Deep neural networks (DNNs) are widely applied to artificial intelligence applications, achieving promising performance at the cost of massive computation, large power consumption, and high latency. Diverse solutions have been proposed to cope with the challenge of latency and power consumption, including light-weight neural networks and efficient hardware accelerators. Moreover, research on quantization reduces the cost of computation and shows the error resiliency of DNNs. To improve the latency and power efficiency of hardware accelerators by exploiting the error resiliency, we propose an application-specific optimization method for the automatic design of approximate multipliers for DNNs. The proposed method optimizes an approximate multiplier by minimizing the error according to the probability distributions extracted from DNNs. By applying the optimized approximate multiplier to a DNN, we obtain 1.60%, 15.32%, and 20.19% higher accuracies than the best reproduced approximate multiplier on the widely used MNIST, FashionMNIST, and CIFAR-10 datasets, respectively, with 12.17% smaller area, 23.38% less power consumption, and 16.53% lower latency. Compared with an exact multiplier, the optimized multiplier reduces the area, power consumption, and latency by 36.88%, 52.45%, and 26.63%, respectively. Applied to FPGA-based and ASIC-based DNN accelerator modules, our approximate multiplier obtains low LUT utilization and small area respectively with competitive max frequency and power consumption, which shows the effectiveness of the proposed method in reducing the hardware cost of DNN accelerators.

Abstract (translated)

URL

https://arxiv.org/abs/2201.08022

PDF

https://arxiv.org/pdf/2201.08022.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot