Paper Reading AI Learner

Cheating Automatic Short Answer Grading: On the Adversarial Usage of Adjectives and Adverbs

2022-01-20 17:34:33
Anna Filighera, Sebastian Ochs, Tim Steuer, Thomas Tregel

Abstract

Automatic grading models are valued for the time and effort saved during the instruction of large student bodies. Especially with the increasing digitization of education and interest in large-scale standardized testing, the popularity of automatic grading has risen to the point where commercial solutions are widely available and used. However, for short answer formats, automatic grading is challenging due to natural language ambiguity and versatility. While automatic short answer grading models are beginning to compare to human performance on some datasets, their robustness, especially to adversarially manipulated data, is questionable. Exploitable vulnerabilities in grading models can have far-reaching consequences ranging from cheating students receiving undeserved credit to undermining automatic grading altogether - even when most predictions are valid. In this paper, we devise a black-box adversarial attack tailored to the educational short answer grading scenario to investigate the grading models' robustness. In our attack, we insert adjectives and adverbs into natural places of incorrect student answers, fooling the model into predicting them as correct. We observed a loss of prediction accuracy between 10 and 22 percentage points using the state-of-the-art models BERT and T5. While our attack made answers appear less natural to humans in our experiments, it did not significantly increase the graders' suspicions of cheating. Based on our experiments, we provide recommendations for utilizing automatic grading systems more safely in practice.

Abstract (translated)

URL

https://arxiv.org/abs/2201.08318

PDF

https://arxiv.org/pdf/2201.08318.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot