Paper Reading AI Learner

Body Models in Humans and Robots

2022-01-20 17:35:16
Matej Hoffmann, Matthew R. Longo

Abstract

Neurocognitive models of higher-level somatosensory processing have emphasised the role of stored body representations in interpreting real-time sensory signals coming from the body (Longo, Azanon and Haggard, 2010; Tame, Azanon and Longo, 2019). The need for such stored representations arises from the fact that immediate sensory signals coming from the body do not specify metric details about body size and shape. Several aspects of somatoperception, therefore, require that immediate sensory signals be combined with stored body representations. This basic problem is equally true for humanoid robots and, intriguingly, neurocognitive models developed to explain human perception are strikingly similar to those developed independently for localizing touch on humanoid robots, such as the iCub, equipped with artificial electronic skin on the majority of its body surface (Roncone et al., 2014; Hoffmann, 2021). In this chapter, we will review the key features of these models, discuss their similarities and differences to each other, and to other models in the literature. Using robots as embodied computational models is an example of synthetic methodology or 'understanding by building' (e.g., Hoffmann and Pfeifer, 2018), computational embodied neuroscience (Caligiore et al., 2010) or 'synthetic psychology of the self' (Prescott and Camilleri, 2019). Such models have the advantage that they need to be worked out into every detail, making any theory explicit and complete. There is also an additional way of (pre)validating such a theory other than comparing to the biological or psychological phenomenon studied by simply verifying that a particular implementation really performs the task: can the robot localize where it is being touched (see this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2201.08319

PDF

https://arxiv.org/pdf/2201.08319.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot