Paper Reading AI Learner

On-Device Learning with Cloud-Coordinated Data Augmentation for Extreme Model Personalization in Recommender Systems

2022-01-24 04:59:04
Renjie Gu, Chaoyue Niu, Yikai Yan, Fan Wu, Shaojie Tang, Rongfeng Jia, Chengfei Lyu, Guihai Chen

Abstract

Data heterogeneity is an intrinsic property of recommender systems, making models trained over the global data on the cloud, which is the mainstream in industry, non-optimal to each individual user's local data distribution. To deal with data heterogeneity, model personalization with on-device learning is a potential solution. However, on-device training using a user's small size of local samples will incur severe overfitting and undermine the model's generalization ability. In this work, we propose a new device-cloud collaborative learning framework, called CoDA, to break the dilemmas of purely cloud-based learning and on-device learning. The key principle of CoDA is to retrieve similar samples from the cloud's global pool to augment each user's local dataset to train the recommendation model. Specifically, after a coarse-grained sample matching on the cloud, a personalized sample classifier is further trained on each device for a fine-grained sample filtering, which can learn the boundary between the local data distribution and the outside data distribution. We also build an end-to-end pipeline to support the flows of data, model, computation, and control between the cloud and each device. We have deployed CoDA in a recommendation scenario of Mobile Taobao. Online A/B testing results show the remarkable performance improvement of CoDA over both cloud-based learning without model personalization and on-device training without data augmentation. Overhead testing on a real device demonstrates the computation, storage, and communication efficiency of the on-device tasks in CoDA.

Abstract (translated)

URL

https://arxiv.org/abs/2201.10382

PDF

https://arxiv.org/pdf/2201.10382.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot