Paper Reading AI Learner

Question Type Guided Attention in Visual Question Answering

2018-04-06 00:28:57
Yang Shi, Tommaso Furlanello, Sheng Zha, Animashree Anandkumar

Abstract

Visual Question Answering (VQA) requires integration of feature maps with drastically different structures and focus of the correct regions. Image descriptors have structures at multiple spatial scales, while lexical inputs inherently follow a temporal sequence and naturally cluster into semantically different question types. A lot of previous works use complex models to extract feature representations but neglect to use high-level information summary such as question types in learning. In this work, we propose Question Type-guided Attention (QTA). It utilizes the information of question type to dynamically balance between bottom-up and top-down visual features, respectively extracted from ResNet and Faster R-CNN networks. We experiment with multiple VQA architectures with extensive input ablation studies over the TDIUC dataset and show that QTA systematically improves the performance by more than 5% across multiple question type categories such as "Activity Recognition", "Utility" and "Counting" on TDIUC dataset. By adding QTA on the state-of-art model MCB, we achieve 3% improvement for overall accuracy. Finally, we propose a multi-task extension to predict question types which generalizes QTA to applications that lack of question type, with minimal performance loss.

Abstract (translated)

视觉问答(VQA)需要将特征映射与完全不同的结构和正确区域的焦点进行整合。图像描述符具有多个空间尺度的结构,而词汇输入固有地遵循时间序列并且自然地聚类成语义上不同的问题类型。以前的许多作品使用复杂的模型来提取特征表示,但忽略了在学习中使用问题类型等高级信息摘要。在这项工作中,我们提出了问题类型引导注意(QTA)。它利用问题类型信息动态平衡从ResNet和更快的R-CNN网络分别提取的自下而上和自上而下的视觉特征。我们对多个VQA架构进行了实验,对TDIUC数据集进行了广泛的输入消融研究,并显示QTA系统地将TDIUC数据集上的“活动识别”,“效用”和“计数”等多个问题类型的性能提高了5%以上。通过在最先进的MCB模型上增加QTA,我们的整体精度提高了3%。最后,我们提出了一个多任务扩展来预测问题类型,将QTA推广到缺少问题类型的应用程序,并且性能损失最小。

URL

https://arxiv.org/abs/1804.02088

PDF

https://arxiv.org/pdf/1804.02088.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot