Paper Reading AI Learner

Gap Minimization for Knowledge Sharing and Transfer

2022-01-26 23:06:20
Boyu Wang, Jorge Mendez, Changjian Shui, Fan Zhou, Di Wu, Christian Gagné, Eric Eaton

Abstract

Learning from multiple related tasks by knowledge sharing and transfer has become increasingly relevant over the last two decades. In order to successfully transfer information from one task to another, it is critical to understand the similarities and differences between the domains. In this paper, we introduce the notion of \emph{performance gap}, an intuitive and novel measure of the distance between learning tasks. Unlike existing measures which are used as tools to bound the difference of expected risks between tasks (e.g., $\mathcal{H}$-divergence or discrepancy distance), we theoretically show that the performance gap can be viewed as a data- and algorithm-dependent regularizer, which controls the model complexity and leads to finer guarantees. More importantly, it also provides new insights and motivates a novel principle for designing strategies for knowledge sharing and transfer: gap minimization. We instantiate this principle with two algorithms: 1. {gapBoost}, a novel and principled boosting algorithm that explicitly minimizes the performance gap between source and target domains for transfer learning; and 2. {gapMTNN}, a representation learning algorithm that reformulates gap minimization as semantic conditional matching for multitask learning. Our extensive evaluation on both transfer learning and multitask learning benchmark data sets shows that our methods outperform existing baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2201.11231

PDF

https://arxiv.org/pdf/2201.11231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot