Paper Reading AI Learner

To what extent should we trust AI models when they extrapolate?

2022-01-27 01:27:11
Roozbeh Yousefzadeh, Xuenan Cao

Abstract

Many applications affecting human lives rely on models that have come to be known under the umbrella of machine learning and artificial intelligence. These AI models are usually complicated mathematical functions that map from an input space to an output space. Stakeholders are interested to know the rationales behind models' decisions and functional behavior. We study this functional behavior in relation to the data used to create the models. On this topic, scholars have often assumed that models do not extrapolate, i.e., they learn from their training samples and process new input by interpolation. This assumption is questionable: we show that models extrapolate frequently; the extent of extrapolation varies and can be socially consequential. We demonstrate that extrapolation happens for a substantial portion of datasets more than one would consider reasonable. How can we trust models if we do not know whether they are extrapolating? Given a model trained to recommend clinical procedures for patients, can we trust the recommendation when the model considers a patient older or younger than all the samples in the training set? If the training set is mostly Whites, to what extent can we trust its recommendations about Black and Hispanic patients? Which dimension (race, gender, or age) does extrapolation happen? Even if a model is trained on people of all races, it still may extrapolate in significant ways related to race. The leading question is, to what extent can we trust AI models when they process inputs that fall outside their training set? This paper investigates several social applications of AI, showing how models extrapolate without notice. We also look at different sub-spaces of extrapolation for specific individuals subject to AI models and report how these extrapolations can be interpreted, not mathematically, but from a humanistic point of view.

Abstract (translated)

URL

https://arxiv.org/abs/2201.11260

PDF

https://arxiv.org/pdf/2201.11260.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot