Paper Reading AI Learner

Efficiently Maintaining Next Basket Recommendations under Additions and Deletions of Baskets and Items

2022-01-27 13:49:14
Benjamin Longxiang Wang, Sebastian Schelter

Abstract

Recommender systems play an important role in helping people find information and make decisions in today's increasingly digitalized societies. However, the wide adoption of such machine learning applications also causes concerns in terms of data privacy. These concerns are addressed by the recent "General Data Protection Regulation" (GDPR) in Europe, which requires companies to delete personal user data upon request when users enforce their "right to be forgotten". Many researchers argue that this deletion obligation does not only apply to the data stored in primary data stores such as relational databases but also requires an update of machine learning models whose training set included the personal data to delete. We explore this direction in the context of a sequential recommendation task called Next Basket Recommendation (NBR), where the goal is to recommend a set of items based on a user's purchase history. We design efficient algorithms for incrementally and decrementally updating a state-of-the-art next basket recommendation model in response to additions and deletions of user baskets and items. Furthermore, we discuss an efficient, data-parallel implementation of our method in the Spark Structured Streaming system. We evaluate our implementation on a variety of real-world datasets, where we investigate the impact of our update techniques on several ranking metrics and measure the time to perform model updates. Our results show that our method provides constant update time efficiency with respect to an additional user basket in the incremental case, and linear efficiency in the decremental case where we delete existing baskets. With modest computational resources, we are able to update models with a latency of around 0.2~milliseconds regardless of the history size in the incremental case, and less than one millisecond in the decremental case.

Abstract (translated)

URL

https://arxiv.org/abs/2201.13313

PDF

https://arxiv.org/pdf/2201.13313.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot