Paper Reading AI Learner

A Semi-Supervised Deep Clustering Pipeline for Mining Intentions From Texts

2022-02-01 23:01:05
Xinyu Chen, Ian Beaver

Abstract

Mining the latent intentions from large volumes of natural language inputs is a key step to help data analysts design and refine Intelligent Virtual Assistants (IVAs) for customer service. To aid data analysts in this task we present Verint Intent Manager (VIM), an analysis platform that combines unsupervised and semi-supervised approaches to help analysts quickly surface and organize relevant user intentions from conversational texts. For the initial exploration of data we make use of a novel unsupervised and semi-supervised pipeline that integrates the fine-tuning of high performing language models, a distributed k-NN graph building method and community detection techniques for mining the intentions and topics from texts. The fine-tuning step is necessary because pre-trained language models cannot encode texts to efficiently surface particular clustering structures when the target texts are from an unseen domain or the clustering task is not topic detection. For flexibility we deploy two clustering approaches: where the number of clusters must be specified and where the number of clusters is detected automatically with comparable clustering quality but at the expense of additional computation time. We describe the application and deployment and demonstrate its performance using BERT on three text mining tasks. Our experiments show that BERT begins to produce better task-aware representations using a labeled subset as small as 0.5% of the task data. The clustering quality exceeds the state-of-the-art results when BERT is fine-tuned with labeled subsets of only 2.5% of the task data. As deployed in the VIM application, this flexible clustering pipeline produces high quality results, improving the performance of data analysts and reducing the time it takes to surface intentions from customer service data, thereby reducing the time it takes to build and deploy IVAs in new domains.

Abstract (translated)

URL

https://arxiv.org/abs/2202.00802

PDF

https://arxiv.org/pdf/2202.00802.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot