Paper Reading AI Learner

Should I take a walk? Estimating Energy Expenditure from Video Data

2022-02-01 19:04:42
Kunyu Peng, Alina Roitberg, Kailun Yang, Jiaming Zhang, Rainer Stiefelhagen

Abstract

We explore the problem of automatically inferring the amount of kilocalories used by human during physical activity from his/her video observation. To study this underresearched task, we introduce Vid2Burn -- an omni-source benchmark for estimating caloric expenditure from video data featuring both, high- and low-intensity activities for which we derive energy expenditure annotations based on models established in medical literature. In practice, a training set would only cover a certain amount of activity types, and it is important to validate, if the model indeed captures the essence of energy expenditure, (e.g., how many and which muscles are involved and how intense they work) instead of memorizing fixed values of specific activity categories seen during training. Ideally, the models should look beyond such category-specific biases and regress the caloric cost in videos depicting activity categories not explicitly present during training. With this property in mind, Vid2Burn is accompanied with a cross-category benchmark, where the task is to regress caloric expenditure for types of physical activities not present during training. An extensive evaluation of state-of-the-art approaches for video recognition modified for the energy expenditure estimation task demonstrates the difficulty of this problem, especially for new activity types at test-time, marking a new research direction. Dataset and code are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2202.00712

PDF

https://arxiv.org/pdf/2202.00712.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot